R:BASE Cursors
Explained

Tinolugies,! Inc.

R:BASE Cursors Explained

by R:BASE Technologies, Inc.

An R:BASE cursor is a valuable programming control structure that
enables traversal reference over the records in a database. It is a
pointer to rows in a table that can step through rows one by one,
performing the same action on each row. A cursor can be set to
point to all the rows in a table or to a subset of rows.

R:BASE Cursors Explained

Copyright © 1982-2017 R:BASE Technologies, Inc.

Information in this document, including URL and other Internet web site references, is subject to change without
notice. The example companies, individuals, products, organizations and events depicted herein are completely
fictitious. Any similarity to a company, individual, product, organization or eventis completely unintentional. R:BASE
Technologies, Inc. shall not be liable for errors contained herein or for incidental consequential damages in
connection with the furnishing, performance, or use of this material. This document contains proprietary information,
which is protected by copyright. Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval
system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise),
or for any purpose, without the express written consent of R:BASE Technologies, Inc. We reserve the right to make
changes from time to time in the contents hereof without obligation to notify any person of such revision or changes.
We also reserve the right to change the specification without notice and may therefore not coincide with the contents
of this document. The manufacturer assumes no responsibilities with regard to the performance or use of third party
products.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

The software described in this documentis furnished under a license agreement. The software may be used or
copied onlyin accordance with the terms of that agreement. Any unauthorized use or duplication of the software is
forbidden.

R:BASE Technologies, Inc. may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any written license
agreement from R:BASE Technologies, Inc., the furnishing of this document does not give you anylicense to these
patents, trademarks, copyrights, or other intellectual property.

Trademarks

R:BASE®, Oterro®, RBAdmin®, R:Scope®, R:WEB Suite®, R:Mail®, R:Charts®, R:Spell Checker®, R:Docs®, R:BASE
Editor®, R:Scheduler®, R:BASE Plugin Power Pack®, R:Style®, R:Code®, R:Struc®, RBZip®, R:Fax®, R:QBDataDirect®,
R:QBSynchronizer®, R:QBDBExtractor®, R:Mail Editor®, R:Linux®, R:BASE Dependency Viewer®, R:Archive®, R:Chat®,
RDCC Client®, R:Mail Editor®, R:Code®, R:Column Analyzer®, R:DF Form Filler®, R:FTPClient®, R:SFTPClient®,
RBMap®, R:GeoCoder®, R:PDF Form Filler®, R:PDFWorks®, R:PDFMerge®, R:PDFSearch®, RBInstaller®,
RBUpdater®, R:Capture®, R:RemoteControl®, R:Synchronizer®, R:Biometric®, R:CAD Viewer®, R:DXF®,
R:Twain2PDF®, R:Tango®, R:SureShip®, R:BASE Total Backup®, R:Scribbler®, R:SmartSig®, R:OutLink®,
R:JobTrack®, R:TimeTrack®, R:Syntax®, R:WatchDog®, R:Manufacturing®, R:Merge®, R:Documenter®, R:Magellan®,
R:WEB Reports®, R:WEB Gateway®, R:Stat®, R:ReadyRoute®, R:Accounting®, R:Contact®, R:DWF Viewer®, R:Mail
Viewer®, R:Java®, R:PHP® and Pocket R:BASE® are trademarks or registered trademarks of R:BASE Technologies,
Inc. All Rights Reserved. All other brand, product names, company names and logos are trademarks or registered
trademarks of their respective companies.

Windows, Windows 10, Windows 8.x, Windows 7, Vista, Windows Server 2003-2012 R2, XP, Bing Maps, MapPoint, and
Outlook are registered trademarks of Microsoft Corporation.

Printed: April 2017 in Murrysville, PA

First Edition

R:BASE Cursors Explained

Table

Part |
Part Il
Part Il
Part IV
Part V
Part VI

Part VII

1
2

Part VIlI
Part IX

of Contents
R:BASE Cursors

Multi-Table Cursors
Non-Updateable Cursors
Nested Cursors
Resettable Cursors
Scrolling Cursors

Optimizing Cursors

Example L.,

Example 2.,

Questions & Answers

Useful Resources

coO N 0o b~ W P

Copyright © 1982-2017 R:BASE Technologies, Inc.

R:BASE Cursors 1

1 R:BASE Cursors

A cursor is a valuable programming tool. It is a pointer to rows in a table. A cursor lets you step
through rows one by one, performing the same action on each row. You can set a cursor to
point to all the rows in a table or to a subset of rows. A cursor is set using the DECLARE
CURSOR command.

The DECLARE CURSOR command does not work by itself, but is really a sequence of commands.
In addition to the DECLARE CURSOR, the OPEN and FETCH commands are required. A WHILE
loop is used to step through the rows and perform the programmed action on each row. The
CLOSE or DROP command is used after the cursor has stepped through all the rows.

The basic sequence of commands for a cursor is as follows:

SET VAR vCust| D | NTEGER = NULL
SET VAR vConpany TEXT = NULL
DECLARE c1 CURSOR FOR +
SELECT Cust| D, Conpany FROM Cust omer
OPEN c1
FETCH c1 I NTO vCust | D | NDI CATOR i vl, vCompany | ND CATCR iv2
VWH LE SQLCODE <> 100 THEN
-- Place code for row by row actions here.
FETCH c1 I NTO vCust | D | NDI CATOR i vl, vConpany | NDI CATCR iv2
ENDWHI LE
DROP CURSCR c1

The DECLARE CURSOR command names the cursor and defines the set of rows. The cursor
name is then used in the OPEN, FETCH, CLOSE, and DROP commands that reference it. A cursor
name can be up to 18 characters long and follows the same naming conventions as all other
names in R:BASE.

More than one cursor can be defined and open at a time. SELECT is used in the DECLARE
CURSOR to identify the rows to step through. The SELECT part of a cursor declaration can point
to rows from a single table or from multiple tables, and can choose all or only some of the
columns from a table. You can use the GROUP BY clause as well as the WHERE and ORDER BY
clauses of SELECT.

The OPEN command initializes the cursor and tells R:BASE you are ready to retrieve a row of
data from the cursor. The OPEN command positions the cursor at the first row of the set of data
defined by the SELECT in the cursor declaration.

The FETCH command retrieves a row of data into the specified variables. The number of
variables must match the number of columns listed in the SELECT part of the DECLARE CURSOR
command. Each variable has a corresponding indicator variable, which tells if a NULL value was
retrieved. The list of variable pairs - data variable and indicator variable - is separated by
commas.

The FETCH command sets SQLCODE, the SQL error variable. If a row was retrieved, SQLCODE is
set to 0. After the last row is retrieved, FETCH sets SQLCODE to 100 - no more data. Using
SQLCODE as the condition for the WHILE loop lets you easily retrieve and act on each
successive row. Placing a second FETCH command immediately before the ENDWHILE command
keeps fetching rows until the end of data is reached. Then the loop exits.

Within the WHILE loop, place whatever commands are needed to operate on each row. You can
look up additional data, perform mathematical calculations, update data, and so on.

When the cursor completes and the WHILE loop is exited, the cursor is dropped with the DROP
CURSOR command. A cursor name must be dropped before it can be declared again. DROP
removes a cursor definition from memory; to use the cursor again, it must be declared with the

Copyright © 1982-2017 R:BASE Technologies, Inc.

R:BASE Cursors Explained

DECLARE CURSOR command. CLOSE leaves a cursor definition in memory; to use the cursor
again, it is opened with the OPEN command. After a cursor has been closed, an OPEN
repositions the pointer at the first row of the cursor definition. CLOSE is most often used with
nested cursors, DROP with individual cursors.

When a cursoris open, you can use a special WHERE clause option, WHERE CURRENT OF
cursorname. This WHERE clause works with the UPDATE, DELETE, and SELECT commands to
perform the specified action on the row the cursor is currently pointing at. The DELETE deletes
the entire row; the SELECT, and UPDATE only operate on columns included in the SELECT part
of the DECLARE CURSOR command. Note that not every cursor definition supports use of the
WHERE CURRENT OF cursorname.

It is not required to use the WHERE CURRENT OF cursorname in your WHERE clause. A WHERE
clause that explicitly points to a row of data using values stored in variables can be used. The
unique row identifier is fetched into a variable, then that value is used to access rows in the
cursor table or other tables.

-- The special WHERE cl ause WHERE CURRENT OF

-- points to the current row of the cursor.

SELECT Cust| D, Conpany FROM Custoner +

WHERE CURRENT OF cl

UPDATE Custoner SET CustlD = (CustlD + 1000) +
WHERE CURRENT OF cl

DELETE FROM Custonmer WHERE CURRENT CF cl

-- Alternatively, use an explicit WHERE
-- clause to access a row

SELECT Cust| D, Conpany FROM Custoner +
WHERE CustID = .vCustID

UPDATE Custoner SET CustID = (CustID + 1000) +
WHERE CustID = .vCustID

DELETE FROM Customer WHERE Cust|ID = .vCQustID

This is the basic cursor structure. Other types of cursors and cursor structures that are used
are: multi-table cursors, non-updateable cursors, nested cursors, resettable cursors, and
scrolling cursors. Each is described below.

Copyright © 1982-2017 R:BASE Technologies, Inc.

R:BASE Cursors 3

2 Multi-Table Cursors

A multi-table cursor includes more than one table in the SELECT part of the cursor declaration.
The tables can be linked directly within the DECLARE CURSOR command; avoiding steps to
define a view to retrieve data from more than one table.

The DECLARE CURSOR command has the full capabilities of the SELECT command to do multi-
table queries. As with the SELECT command itself, you list the columns to retrieve, the tables to
get the data from, then link the tables in the WHERE clause. For example,

SET VAR vCust| D | NTEGER = NULL

SET VAR vConpany TEXT = NULL

SET VAR vTrans!| D | NTEGER = NULL

SET VAR vTransDate DATE = NULL

SET VAR vl nvoi ceTotal CURRENCY = NULL

-- Check for an existing cursor, and drop it if exists
SET VAR vCheckCursor | NTEGER = (CHKCUR('Cl'))
I F vCheckCursor = 1 THEN
DRCP CURSCR C1
ENDI F

-- Select data fromboth the Custoner and Transnaster tables.
DECLARE C1 CURSOR FOR SELECT +
Cust | D, Company, TranslD, TransDate, |nvoiceTotal +
FROM Cust oner, TransMaster +
VWHERE Custoner. Cust|I D = TransMaster. Custl D
COPEN C1

-- The fetch retrieves all the specified colums into variabl es.
FETCH C1 | NTO vCust | D I NDI CATCR i v1, vConpany | NDI CATOR iv2 +
vTrans|I D I NDI CATOR iv3, vTransDate | NDI CATCR iv4, +
vl nvoi ceTotal | NDI CATOR iv5
WH LE SQLCCDE <> 100 THEN

-- Place code for row by row actions here.
-- An explicit WHERE cl ause nust be used,
-- WHERE CURRENT OF is not supported with
-- nulti-table cursors.

-- Get the next row
FETCH C1 I NTO vCust| D | NDI CATOR ivl, vConpany | NDI CATOR iv2 +
vTrans| D | NDI CATOR iv3, vTransDate | NDI CATOR iv4, +
vl nvoi ceTot al | NDI CATCR i v5
ENDVWHI LE
DROP CURSCR C1
CLEAR VAR vCust | D, vConpany, vTransl D, vTransDate, vlnvoiceTotal
RETURN

Notice that the basic structure of the cursor commands doesn't change. You still declare the
cursor, open it, fetch the first row, then use a WHILE loop to step through each row. There is
no limit to the number of tables that can be included in a DECLARE CURSOR command. The
tables are joined together in the same way they are joined with a regular SELECT command.

A multi-table cursor definition is a non-updateable cursor, however. You cannot update the
cursor directly by using WHERE CURRENT OF cursorname. You must use explicit WHERE clauses
to access the cursor tables.

Copyright © 1982-2017 R:BASE Technologies, Inc.

R:BASE Cursors Explained

Non-Updateable Cursors

A non-updateable cursoris one that does not support use of the special WHERE clause WHERE
CURRENT OF cursorname. An explicit WHERE clause must be used to access data in the tables.

A non-updateable cursoris a multi-table cursor, or a cursor that is defined, for example, using
the GROUP BY clause. The SELECT command that defines the cursor rows does not allow the
cursor to point back to a single specific row in a table.

Non-updateable cursors are a very useful part of the DECLARE CURSOR structure. Use the
power of the SELECT command in the DECLARE CURSOR declaration to dramatically improve the
performance of a cursor. The more work the cursor does, the less your program has to do and
the faster and more efficiently it will run.

When using a non-updateable cursor, make sure you fetch a unique row identifier for use in
WHERE clauses.

Copyright © 1982-2017 R:BASE Technologies, Inc.

Non-Updateable Cursors 5

4 Nested Cursors

A nested cursor involves two DECLARE CURSOR definitions. The second cursor is dependent on
the first and its cursor definition uses a variable value fetched by the first cursor.

There is a specific structure recommended for nested cursors - a row is retrieved from cursor
one, then the matching rows in cursor two are retrieved and stepped through. Then the next
row is retrieved from cursor one and its matching rows from cursor two are stepped through.
The process continues until all rows have been retrieved from cursor one.

Example

SET VAR vCust| D | NTEGER = NULL
SET VAR vCust| Dl | NTEGER = NULL
SET VAR vConpany TEXT = NULL
SET VAR vFirst Nane TEXT = NULL
SET VAR vlLast Nane TEXT = NULL

-- Check for existing cursors, and drop it if exists
SET VAR vCheckCursor | NTEGER = (CHKCUR(' cl1'))
I F vCheckCursor = 1 THEN
DRCP CURSCR cl
ENDI F
SET VAR vCheckCursor | NTEGER = (CHKCUR('c2'))
I F vCheckCursor = 1 THEN
DRCP CURSCR c2
ENDI F

-- The DECLARE commands are done toget her
-- at the top of the program
-- An OPEN cursor does not need to inmediately
-- follow the correspondi ng DECLARE CURSCR conmand
DECLARE cl1 CURSOR FOR SELECT Cust| D, Company +
FROM Cust orer CRDER BY Company
-- The second cursor uses a variable in the
-- WHERE cl ause. This variable, vCQustlD, nust be
-- defined earlier in the program
-- The cursor retrieves rows for a single Custonmer only
DECLARE c2 CURSOR FOR +
SELECT Cust1 D, Cont FNanme, Cont LNane +
FROM Cont act WHERE CustID = .vCustID

-- CQursor cl is opened and the first row retrieved

-- fromthe Customner table

OPEN c1

FETCH c1 I NTO vCust | D1l | NDI CATOR ivl, vConpany | ND CATCR iv2
WH LE SQLCCDE <> 100 THEN

-- CQursor c2 is opened, it points to all the
-- rows in the Contact table that match the
-- CustID fetched into vQustID by cursor cl.
CPEN c2

-- Get the first rowfromthe contact table and step

-- through all matching rows.

FETCH c2 I NTO vCust I D1 I NDI CATOR iv1l, vFirstNane | NDI CATOR iv2, +
vLast Narme | NDI CATOR i v3

Copyright © 1982-2017 R:BASE Technologies, Inc.

R:BASE Cursors Explained

VWH LE SQLCCDE <> 100 THEN
-- Place code here to do row by row actions

--Cet the next row for cursor c2
FETCH c2 INTO vCust I D1 | NDI CATCR i vl, vFirstNane | NDI CATOR iv2, +
vLast Narme | NDI CATOR i v3
ENDVWHI LE

-- After all the matching rows in the contact table
-- have been processed, close cursor c2 and get the
-- next row fromthe Custoner table.

-- CQursor c2 is closed and not dropped because

-- the definition will be reused for the next

-- row fromcursor cl.

CLCSE c2

-- CGet the next row for cursor cl
FETCH c1 I NTO vCust| D1l | NDI CATOR ivl, vConpany | ND CATOR iv2
ENDVWHI LE

-- Both cursors are dropped when all the rows

-- in the Custoner table have been retrieved.

DROP CURSCR c2

DROP CURSCR c1

CLEAR VAR vCustI D, vCustlIDl, vConpany, VFirstName, vLastName
RETURN

You can use the same WHILE loop condition, SQLCODE <> 100, for both cursors. This works
very well and there is no conflict between the two loops. The relative FETCH command sets the
value of SQLCODE. Notice that the FETCH from cursor c2 is right before the ENDWHILE of the
inner WHILE loop ensuring that that FETCH command is the one being tested by the WHILE
loop. The FETCH from cursor cl is right before the ENDWHILE of the outer WHILE loop, which
then continues based on cursor cl. This placement of the DECLARE, OPEN, FETCH, WHILE, and
ENDWHILE statements will always work. Just make sure the ENDWHILE is the next command
after the FETCH.

With nested cursors, the inner cursor is closed and opened so that it always references the
matching rows from the outer cursor. An alternative to opening and closing the inner cursor is
to use the RESET option on the OPEN command.

Copyright © 1982-2017 R:BASE Technologies, Inc.

Nested Cursors 7

5 Resettable Cursors

A DECLARE CURSOR can use a variable in its WHERE clause. Each time the cursoris opened, the
WHERE clause is reevaluated using the current variable value and identifies a new set of data.

You can CLOSE and OPEN a defined cursor, or use the OPEN cursorname RESET command.
Don't use the CLOSE command if you place the RESET option on the OPEN command. The RESET

option automatically reevaluates the variable value and identifies a new set of data for the
cursor.

OPEN cursorname RESET is commonly used with nested cursors. The second cursor is
dependent on a variable fetched by the first cursor. By using RESET, you won't need to CLOSE
the inner cursor each time.

Using the RESET option on OPEN is faster using than the OPEN, CLOSE sequence of commands.

Copyright © 1982-2017 R:BASE Technologies, Inc.

R:BASE Cursors Explained

Scrolling Cursors

Normally, cursors move through the data in one direction only, from top to bottom. They move
forward one-by-one through the set of defined rows. Once a row has been accessed and
passed over, you can't get back to it. The rows can be ordered in the cursor definition - the top
to bottom order is not necessarily the table order.

When a cursor is defined as a scrolling cursor, you gain the capability of moving both forwards
and backwards through the rows of data and can also jump past rows.

To define a cursor as a scrolling cursor, include the word SCROLL in the DECLARE CURSOR
command. For example,

DECLARE c1 SCROLL CURSOR FOR SELECT ...

The word SCROLL comes right after the cursor name. If SCROLL is not included in the cursor
definition, the cursor can only move forward through the rows one at a time.

Once a cursor is defined as a scrolling cursor, a number of additional options on the FETCH
command become available. These options are as follows; note that the directions and
positions are based on the order of the rows as specified by the DECLARE CURSOR command,
not on the order of the rows in the actual table:

NEXT - The default option if none is specified on the FETCH command. NEXT moves the cursor
forward through the rows, it gets the next available row based on the current cursor position.
NEXT steps through the rows one-by-one going forward.

PRIOR - Moves the cursor backwards through the rows. The PRIOR option gets the previous
row based on the current cursor position, and steps through the rows one-by-one going
backwards.

FIRST - Moves the cursor from its current position to the first row. This option jumps
immediately to the first row as determined by the DECLARE CURSOR command. A FETCH NEXT
then finds the second row. The cursor is repositioned at the beginning of the set of rows.

LAST - Moves the cursor from its current position immediately to the last row as specified by
the DECLARE CURSOR command. A FETCH PRIOR then finds the next to last row; a FETCH NEXT
returns "end of data encountered". LAST jumps over the rows between the current cursor
position and the last row.

ABSOLUTE n - Moves the cursor the specified humber of rows from the first row of data as
determined by the DECLARE CURSOR and OPEN commands. A positive number must be
specified; you can't use this option to move backwards. The intervening rows are jumped over.
You can't jump past the last row; if the number given is greater than the number of rows
retrieved, an "end of data" error is returned.

RELATIVE n - Moves the cursor the specified number of rows from the current cursor position.
This option moves the cursor either forwards or backwards - forwards if a positive number is
specified, backwards if a negative number is specified. The intervening rows are jumped over.
You can't jump past the last row or the first row; an "end of data" error is returned if the
specified number would take you past the beginning or end of the selected rows.

Example

To see how a scrolling cursor can be used in an application, imagine you have a group of
customers to contact each day. The scrolling cursor retrieves the list of customers for today.
They are ordered by Company name. The first row is brought up in a menuless form. The form
remains on the screen when you are done with the record, and a CHOOSE menu pops up giving
the user choices as to which record to select next.

Copyright © 1982-2017 R:BASE Technologies, Inc.

Scrolling Cursors 9

You can: move through the list of customers one-by-one, both forwards and backwards, jump
to the last record and back to the first record, jump past a group of records, and search for a
particular record by last name or by Company name

Each time you select a record, the cursor is repositioned ready for the next selection.

--WALKLI ST. RVMD

--scroll through a list of custoners
SET MESSAGES OFF

SET ERROR MESSAGES OFF

SET VAR vCust | D | NTEGER = NULL
SET VAR vlLast Nane TEXT = NULL
SET VAR vConpany TEXT = NULL
SET VAR vNum | NTEGER = NULL
SET VAR vPlus I NTEGER = NULL
SET VAR vM nus | NTEGER = NULL
SET VAR vSearch TEXT = NULL

SET VAR vCheckCursor | NTEGER = (CHKCUR('Cl'))
| F vCheckCursor = 1 THEN

DROP CURSCR C1
ENDI F

--Define the scrolling cursor

DECLARE Cl scroll CURSOR FOR +
SELECT Custld, LastNanme, Conpany FROM Custoner +
WHERE Cal | Date = . #DATE ORDER BY Conpany

--Open the cursor and get the first row

OPEN C1

FETCH FI RST FROM C1 | NTO +
vCustld I NDI CATOR i vl, vLastNane | NDI CATOR iv2, +
vConpany | NDI CATOR i v3

WH LE SQLCCDE <> 100 THEN

--Bring up the formwith the data fromthe first row
--After the formis closed, choose fromthe nenu which record to retrieve next
EDI T USI NG Cust Form WHERE Custld = .vCustld
CHOOSE vActi on FROM #LI ST +
' Next Custoner, Previ ous Custoner,Junp Forward "n",Junp Backward "n", +
Last Custoner, First Customer, Search by Last Nane, Search by Conpany' +
TITLE ' Sel ect Custoner' CAPTION ' Choose' LINES 8 FORVATTED
IF vAction = '[Esc]' THEN
RETURN
ENDI F

--The switch/case bl ock determ nes which record to retrieve
SWTCH (. vActi on)

--Move forward one row at a tine
CASE ' Next Custoner'
FETCH NEXT FROM C1 | NTO +
vCustld I NDI CATOR i vl, vLastNane | NDI CATOR iv2, +
vConpany | NDI CATOR i v3

--If already on the last row, stay there
I F SQLCCDE = 100 THEN

Copyright © 1982-2017 R:BASE Technologies, Inc.

10 R:BASE Cursors Explained

FETCH LAST FROM Cl | NTO +
vCust |l d | NDI CATOR ivl, vLastNarme | NDI CATOR iv2, +
vConpany | NDI CATOR i v3
ENDI F
BREAK

--Mbve backward one row at a tine
CASE ' Previ ous Custoner'
FETCH PRIOR FROM C1 | NTO +
vCustld I NDI CATOR i vl, vLastNane | NDI CATOR iv2, +
vConpany | NDI CATOR i v3

--If already on the first row, stay there
I F SQLCCDE = 100 THEN
FETCH FI RST FROM C1 | NTO +
vCust |l d | NDI CATOR ivl, vLastNarme | NDI CATOR iv2, +
vConpany | NDI CATOR i v3
ENDI F
BREAK

--Mve forward the specified nunber of records

CASE ' Junp Forward "n"'
DI ALOG ' How many to junp forward?' vNun¥4 vEndKey 1
SET VAR vPlus = (I NT(.vNum)

--R BASE counts fromthe current cursor position
FETCH RELATI VE . vPlus FROM Cl | NTO +
vCustld | NDI CATOR ivl, vLastNane | NDI CATOR iv2, +
vConpany | NDI CATCR i v3

--1f the nunber of records to junp past takes you beyond the | ast
--record, the last record is retrieved
I F SQLCODE = 100 THEN
FETCH LAST FROM C1 I NTO +

vCustld | NDI CATOR ivl, vLastNane | NDI CATOR iv2, +

vConpany | NDI CATCR i v3
ENDI F
BREAK

--Mve backward the specified nunber of records

CASE ' Junmp Backward "n"'
DI ALOG ' How many to jump backward?' vNunm=4 vEndKey 1
SET VAR vM nus = (INT(.vNum * -1)

--R BASE counts fromthe current cursor position
FETCH RELATI VE .vM nus FROM Cl I NTO +
vCustld | NDI CATOR ivl, vLastNane | NDI CATOR iv2, +
vConpany | NDI CATCR i v3

--1f the nunber of records to junp past takes you beyond the first
--record, the first record is retrieved
| F SQLCCDE = 100 THEN
FETCH FI RST FROM C1 | NTO +
VCust|d | NDI CATOR | Custld, VLastnane | NDIl CATOR | Last nane, +
VConpany | NDI CATOR | Conpany
ENDI F
BREAK

Copyright © 1982-2017 R:BASE Technologies, Inc.

Scrolling Cursors 11

--Junp to the last record Next Custonmer fromthe |ast record
--returns end-of-data
CASE ' Last Custoner'
FETCH LAST FROM C1 | NTO +
vCustld | NDI CATOR i vl, vLastNane | NDI CATOR iv2, +
vConpany | NDI CATCR i v3
BREAK

--Junp to the first record Prior Custonmer fromthe first record
--returns end-of-data
CASE ' First Customer'
FETCH FI RST FROM CL1 | NTO +
vCustld | NDI CATOR ivl, vLastNane | NDI CATOR iv2, +
vConpany | NDI CATCR i v3
BREAK

--Prompt for the last nanme to find
CASE ' Search by Last Nane'
DI ALOG 'Enter the last name to find vSearch vEndKey 1
| F vEndKey = '[Esc]' THEN
BREAK
ENDI F

WH LE #Pl <> 0.0 THEN

--Search forward for a natching record

FETCH NEXT FROM Cl | NTO +
vCust |l d | NDI CATOR ivl, vLastNarme | NDI CATOR iv2, +
vConpany | NDI CATOR i v3

--If a match is found, the rowis displayed and the cursor
--repositioned at that row
I F vLast Nare CONTAINS . vSearch THEN
BREAK
ENDI F

--1f no match was found, the search can be continued fromthe first row
| F SQLCCDE = 100 THEN
DI ALOG ' No match found. Continue search from begi nni ng?" +
vResponse vEndKey YES
I F vEndKey = '[Esc]' THEN
BREAK
ENDI F

| F vResponse = 'YES THEN
FETCH FI RST FROM C1 | NTO +
vCustld | NDI CATOR i vl, vLastNane | NDI CATOR iv2, +
vConpany | NDI CATCR i v3
| F vLast Namre CONTAINS . vSearch THEN
BREAK
ENDI F
ELSE
--1f the search is not continued, the last rowis retrieved
FETCH LAST FROM C1 | NTO +
vCustld | NDI CATOR i vl, vLastNane | NDI CATOR iv2, +
vConpany | NDI CATCR i v3

Copyright © 1982-2017 R:BASE Technologies, Inc.

12 R:BASE Cursors Explained

BREAK
ENDI F
ENDI F
ENDWH LE
BREAK

--Pronpt for the Conpany nane to find
CASE ' Search by Conpany'
SET VAR vSearch = NULL
DI ALOG ' Enter the Conpany to find vSearch vEndKey 1
| F vEndKey = '[Esc]' THEN
BREAK
ENDI F

--Search forward for a matching Conpany record If a match is found,
--the row is displayed and the cursor repositioned at that row
VWH LE #PI <> 0.0 THEN
FETCH NEXT FROM Cl | NTO +
vCustld I NDI CATOR ivl, vLastNane | NDI CATOR iv2, +
vConpany | NDI CATCR i v3
| F vConmpany CONTAINS .vSearch THEN
BREAK
ENDI F

--If no match was found, the search can be continued fromthe first row
| F SQLCCDE = 100 THEN
DI ALOG ' No match found. Continue search from begi nni ng?" +
vResponse vEndKey YES
| F vEndKey = '[Esc]' THEN
BREAK
ENDI F
| F vResponse = 'YES THEN
FETCH FI RST FROM C1 | NTO +
vCustld I NDI CATOR ivl, vLastNanme | NDI CATOR iv2, +
vConpany | NDI CATCR i v3
| F vConmpany CONTAINS .vSearch THEN
BREAK
ENDI F
ELSE
--1f the search is not continued, the last rowis retrieved.
FETCH LAST FROM C1 | NTO +
vCustld I NDI CATOR ivl, vLastNane | NDI CATOR iv2, +
vConpany | NDI CATCR i v3

BREAK
ENDI F
ENDI F
ENDVH LE
BREAK
ENDSW
ENDVWH LE

DRCOP CURSCR C1
CLEAR VAR vCust | D, vLastName, vConpany, vNum vPlus, vM nus, vSearch
RETURN

Copyright © 1982-2017 R:BASE Technologies, Inc.

Scrolling Cursors 13

7 Optimizing Cursors

DECLARE CURSOR is not always the fastest way to accomplish a task, particularly an UPDATE or
an INSERT. If you can replace your DECLARE CURSOR routine with a single SQL command, you
will dramatically improve performance. However, some tasks require a DECLARE CURSOR.

Let the cursor do the work

To improve the performance of a DECLARE CURSOR routine, do as much work in the DECLARE
CURSOR as possible. This is the single most important factor in improving cursor performance.
Do whatever work can be done in the SELECT command part of the DECLARE CURSOR - select
as many columns of data as possible and also do calculations there if you can. The DECLARE
CURSOR does the operation only once; inside the WHILE loop, the command is repeated for
each row that is stepped through.

To do actions for unique rows only, use SELECT DISTINCT in the cursor definition instead of
adding code to your WHILE loop to test the row values to see if they are the same or different.
Use the SELECT functions to sum, average, count and so on in the cursor definition instead of
for each row in the WHILE loop. Select as many columns as possible in the DECLARE CURSOR
rather than retrieve the data each row in the WHILE loop.

The fewer commands repeated in the WHILE loop, the faster your DECLARE CURSOR will run.
Remember that each command in the WHILE loop is repeated for each row retrieved by the
DECLARE CURSOR. Use optimized variables in the WHILE loop -initialize each variable outside
the WHILE loop, and do not change the data type of variables in the loop.

Following are two examples showing progressive changes made to a DECLARE CURSOR routine
to improve performance.

7.1 Examplel

The task is to sum the extended price column in the transaction detail, Transdetail, table for
each transaction ID, then update the transaction header, Transmaster, table with the sum. An
initial approach is to declare a cursor on the header table, then step through all matching rows
in the detail table. After all the matching detail rows have been processed, the header table is
updated.

*(Post1l. RMD -- the worst case)

-- nested declare cursors

-- strictly linear progranm ng

SET VAR vTransl D | NTEGER = NULL
SET VAR vNet Amount CURRENCY = NULL
SET VAR vTotal CURRENCY = NULL
SET VAR vPrice CURRENCY = NULL

SET VAR vCheckCursor | NTEGER

| F vCheckCursor = 1 THEN
DROP CURSCR c1

ENDI F

SET VAR vCheckCursor | NTEGER

| F vCheckCursor = 1 THEN
DROP CURSCR c2

ENDI F

(CHKCUR(' c1'))

(CHKOUR(" c2"))

DECLARE c1 CURSOR FOR SELECT Transl D, Net Anount +
FROM Tr ansMast er
COPEN c1
FETCH c1 INTO vTransI D | NDIl CATOR i vl, vNet Anount | NDI CATOR iv2

Copyright © 1982-2017 R:BASE Technologies, Inc.

14

R:BASE Cursors Explained

WH LE SQLCODE <> 100 THEN
DECLARE c2 CURSOR FOR SELECT ExtPrice +
FROM TransDetai | WHERE TransI D = .vTransl D
OPEN c2
FETCH c2 INTO vPrice | NDI CATCR iv3
WH LE SQLCODE <> 100 THEN
SET VAR vTotal = (.vTotal + .vPrice)
FETCH c2 INTO vPrice | NDI CATCR iv3
ENDVWHI LE
DROP CURSOR c2
UPDATE TransMaster SET Net Anbunt = .vTotal +
WHERE CURRENT CF cl1
SET VAR vTotal = NULL
FETCH c1 INTO vTrans! D | NDI CATOR i v1l, vNet Amount | NDI CATOR iv2
ENDVWHI LE
DROP CURSCR c1
CLEAR VAR vTransl D, vNet Amount, vTotal, vPrice
RETURN

We can speed up this code by following the recommended structure for nested cursors. If we
move the second DECLARE CURSOR out of the WHILE loop and reset the cursor instead of
dropping it, this command file will execute faster. However, the best way to improve this code is
by removing the second DECLARE CURSOR altogether. We don't need to step through all the
rows in the detail table - we can compute the sum with a single SELECT command.

*(Post2.RMD - a little bit better)

-- use the SELECT or COWPUTE comrand

-- to calculate the suminstead of a nested cursor
SET VAR vTransl D | NTEGER = NULL

SET VAR vNet Anount CURRENCY = NULL

SET VAR vPrice CURRENCY = NULL

SET VAR vCheckCursor | NTEGER = (CHKCUR('cl'))
| F vCheckCursor = 1 THEN

DROP CURSOR c1
ENDI F

DECLARE cl1 CURSOR FOR SELECT Transl D, Net Anount +
FROM Tr ansMast er
OPEN c1
FETCH c1 INTO vTrans! D | NDIl CATOR i v1l, vAnount | NDI CATCR iv2
WH LE SQ.CCDE <> 100 THEN
SELECT SUM Ext Price) |INTO vPrice +
FROM TransDetail WHERE TransI D = .vTransl D
-- if no matching rows in the Transdetail table,
-- vPrice is null
IF vPrice IS NOT NULL THEN
UPDATE TransMaster SET Net Anbunt = .vPrice +
WHERE CURRENT COF cl1
ENDI F
SET VAR vPrice = NULL
FETCH c1 INTO vTrans!| D | NDI CATOR i vl, vAmount | NDI CATOR iv2
ENDVWHI LE
DROP CURSCR c1
CLEAR VAR vTransl D, vNet Amount, vPrice
RETURN

Copyright © 1982-2017 R:BASE Technologies, Inc.

Optimizing Cursors 15

This simple change reduced the number of commands in the program, which in turn improved
performance. All the commands inside the WHILE loop still need to be executed for as many
rows as are in the Transmaster table, however. The Transmaster table has fewer rows than
the Transdetail table, so a valid assumption is to place the cursor on the Transmaster table to
repeat the WHILE loop the fewest times.

However, if we place the cursor on the detail table instead of on the header table, the sum can
be calculated directly in the DECLARE CURSOR. Because the command is grouped by the
transaction ID, the same number of rows is retrieved by the cursor. The only commands to
repeat in the WHILE loop are the UPDATE and the FETCH to get the next row. At first this might
seem backwards, but computing the sum in the DECLARE CURSOR is much faster.

*(Post3. RVMD - better yet)

-- declare the cursor on the detail table and
-- do the sumdirectly in the cursor definition
SET VAR vTransl D | NTEGER = NULL

SET VAR vNet Anount CURRENCY = NULL

SET VAR vPrice CURRENCY = NULL

SET VAR vCheckCursor | NTEGER = (CHKCUR('cl'))
| F vCheckCursor = 1 THEN

DROP CURSOR c1
ENDI F

DECLARE cl1 CURSCOR FOR SELECT Transl D, SUMExtPrice) +
FROM TransDet ai | GROUP BY Transl D
OPEN c1
FETCH c1 INTO vTransI D | NDI CATOR ivl, vPrice | ND CATOR iv2
WH LE SQ.CCDE <> 100 THEN
-- this is a non-updateable cursor so an explicit
-- WHERE cl ause is used
UPDATE TransMaster SET Net Anount = .vPrice +
WHERE TransI D = .vTransl D
FETCH c1 INTO vTransI D I NDI CATCR ivl, vPrice | NDI CATOR iv2
ENDVH LE
DROP CURSOR cl1
CLEAR VAR vTrans| D, vNet Anount, vPrice
RETURN

The number of commands has been reduced by over half from the first program, and

performance by more than that. The multi-table update command is actually the fastest way to
accomplish this task.

*(Post4.RVD - do a nulti-table update if you can)
-- multi table update command, a view is used
-- to first calculate the sumand create a
-- one-one relationship
DROP VI EW Tr ansVi ew
CREATE VI EW TransVi ew (Transl D, Anmount) AS +
SELECT Transl D, SUM ExtPrice) +
FROM TransDetai | GROUP BY Transl D
UPDATE TransMaster SET Net Anount = Anount +
FROM TransMaster , TransView t2 +
VWHERE TransMaster. TransID = t2. Transl D

Copyright © 1982-2017 R:BASE Technologies, Inc.

R:BASE Cursors Explained

Example 2

The task here is to create a quick report of companies from the Customer table and their
corresponding contact names from the Contact table. Using nested cursors makes printing the
Company information once followed by the many rows of contact information easier.

*(CQust Repl. RVD - the worst case)

-- nested cursors are used with the declare for
-- the second cursor inside the while |oop of
-- the first cursor. Also, the data is retrieved
-- with a SELECT command instead of in the

-- cursor definition

SET VAR vCust| D | NTEGER = NULL

SET VAR vConpany TEXT = NULL

SET VAR vAddress TEXT = NULL

SET VAR vGty TEXT = NULL

SET VAR vState TEXT = NULL

SET VAR vZi pCode TEXT = NULL

SET VAR vPhone TEXT = NULL

SET VAR vGityStatezZip TEXT = NULL

SET VAR vFNarme TEXT = NULL

SET VAR vLNarme TEXT = NULL

SET VAR vFul | Nane TEXT = NULL

SET VAR vCheckCursor1 | NTEGER

| F vCheckCursorl = 1 THEN
DROP CURSCR c1

ENDI F

SET VAR vCheckCursor2 | NTEGER

| F vCheckCursor2 = 1 THEN
DROP CURSCR c2

ENDI F

(CHKCUR(' c1'))

(CHKCUR(' ¢2'))

-- Only the unique rowidentifier is specified in

-- the cursor definition

DECLARE c1 CURSOR FOR SELECT Cust| D FROM Cust oner +
ORDER BY Cust | D

OPEN cl1

FETCH c1 I NTO vCQust | D | NDI CATOR i v1

VWH LE SQLCCDE <> 100 THEN

-- Retrieve and display the rest of the
-- data for a Custoner
SELECT Conpany, CustAddress, CustGty, +
Cust State, CustZ p, CustPhone |NTO +
vConpany | NDI CATCR iv1l, vAddress | NDI CATOR iv2, +
vCity I NDICATOR iv3, vState | NDI CATOR iv4, +
vZi pCode | NDI CATOR i v5, vPhone I NDI CATOR iv6 +
FROM Cust oner WHERE CustI D = .vCQustID
SET VAR vGityStatezZip = (.vOty +',' & .vState & .vZ pCode)
VWRI TE . vCustI D, .vConpany
WRI TE . vAddr ess
WRITE .vCGtyStateZp

-- Declare a cursor to identify matching contact rows
DECLARE c2 CURSOR FOR SELECT Cont FName, Cont LNane +
FROM Cont act WHERE CustID = .vCQustID

Copyright © 1982-2017 R:BASE Technologies, Inc.

Optimizing Cursors 17

CPEN c2
FETCH c2 I NTO vFNane | NDI CATOR iv1, vLNane | NDI CATOR iv2
VWH LE SQLCODE <> 100 THEN
SET VAR vFul | Nane = (.vFNanme & .vLNane)
WRI TE . vFul | Narre
FETCH c2 | NTO vFNarre | NDI CATOR i v1, vLNane | NDI CATOR iv2
ENDVH LE
DROP CURSCR c2
FETCH c1 INTO vCust|I D I NDI CATOR i vl
ENDVH LE
DROP CURSCR c1
CLEAR VAR vCust| D, vCompany, vAddress, vCty, vState, +
vZi pCode, vPhone, vGtyStateZip, vFNane, vLName, vFull Nane
RETURN

The next code segment shows the recommended structure for nested cursors. The second
DECLARE CURSOR is moved to the top of the program, and the second cursoris opened and
closed, not declared and dropped. Just this simple change improves performance.

*(CQust Rep2. RMD - nove cursor out of WH LE | oop)
SET VAR vCust| D I NTEGER = NULL

SET VAR vConpany TEXT = NULL

SET VAR vAddress TEXT = NULL

SET VAR vOty TEXT = NULL

SET VAR vState TEXT = NULL

SET VAR vZi pCode TEXT = NULL

SET VAR vPhone TEXT = NULL
SET VAR vGityStateZip TEXT = NULL
SET VAR vFNane TEXT = NULL

SET VAR vLNanme TEXT = NULL
SET VAR vFul | Nane TEXT = NULL

SET VAR vCheckCursor1 | NTEGER

| F vCheckCursorl = 1 THEN
DROP CURSCR c1

ENDI F

SET VAR vCheckCursor2 | NTEGER

| F vCheckCursor2 = 1 THEN
DROP CURSCR c2

ENDI F

(CHKCUR(' c1'))

(CHKCUR(" ¢2'))

DECLARE c1 CURSOR FOR SELECT Cust!ID +
FROM Cust onmer ORDER BY Cust | D

DECLARE c2 CURSOR FOR SELECT Cont FNane, contl nane +
FROM cont act WHERE CustID = .vCustID

-- Get the first row of data for a Custoner
CPEN c1

FETCH c1 I NTO vCust | D | NDI CATOR i vl

WH LE SQLCODE <> 100 THEN

-- Retrieve and display the rest of the

-- data for a Custoner

SELECT Conpany, CustAddress, CustGty, +
Cust State, CustZ p, CustPhone INTO +
vConpany | NDI CATOR vi 1, vAddress | NDI CATOR vi 2, +
vCity | NDICATOR vi 3, vState | NDI CATOR vi 4, +

Copyright © 1982-2017 R:BASE Technologies, Inc.

R:BASE Cursors Explained

vZi pCode | NDI CATOR vi 5, vPhone | NDI CATOR vi 6 +
FROM Cust oner WHERE CustI D = .vCust!ID
SET VAR vCityStateZip = (.vCGty +',' & .vState & .vZi pCode)
WRI TE .vCust| D, .vConpany
WRI TE . vAddr ess
WRITE .vCGtyStateZp

-- Qpen cursor c2, retrieve and display
-- the matching contact data
OPEN c2
FETCH c2 | NTO vFNanme | NDI CATOR i1, vLName | NDI CATOR i 2
VWH LE SQLCODE <> 100 THEN
SET VAR vFul | Nane = (.vFNane & .vLNane)
WRI TE . vFul | Namre
FETCH c2 | NTO vFNane | NDI CATOR i1, vLNare | NDI CATOR i 2
ENDWHI LE

-- Cose cursor c2 and get the next row of
-- Custoner data
CLCSE c2
FETCH c1 I NTO vCust | D | NDI CATOR i v1
ENDVH LE
DROP CURSCR c1
DROP CURSCR c2
CLEAR VAR vCust | D, vConpany, vAddress, vCGty, vState, +
vZi pCode, vPhone, vGtyStateZip, vFName, vLNane, vFul | Narme
RETURN

Moving the data retrieval to the DECLARE CURSOR command instead of using a separate
SELECT command again improves performance.

*(Cust Rep3. RVD)

--retrieve data through DECLARE CURSOR
SET VAR vCust| D | NTEGER = NULL
SET VAR vConpany TEXT = NULL

SET VAR vAddress TEXT = NULL

SET VAR vOty TEXT = NULL

SET VAR vState TEXT = NULL

SET VAR vZi pCode TEXT = NULL

SET VAR vPhone TEXT = NULL

SET VAR vCityStateZi p TEXT = NULL
SET VAR vFNane TEXT = NULL

SET VAR vLNane TEXT = NULL

SET VAR vFul | Name TEXT = NULL

SET VAR vCheckCursorl | NTEGER

| F vCheckCursorl = 1 THEN
DROP CURSCR c1

ENDI F

SET VAR vCheckCursor?2 | NTEGER

| F vCheckCursor2 = 1 THEN
DROP CURSCR c2

ENDI F

(CHKCUR(' ¢1'))

(CHKCUR(' ¢2'))

-- retrieve all the data through the DECLARE CURSCR
-- conmand i nstead of SELECT
SET VAR vCust| D | NTEGER

Copyright © 1982-2017 R:BASE Technologies, Inc.

Optimizing Cursors 19

DECLARE c1 CURSOR FOR SELECT Cust| D, Conpany, +
Cust Address, CustCity, CQustState, CustZip, +
Cust Phone FROM Cust oner ORDER BY Cust| D

DECLARE c2 CURSOR FOR SELECT Cont FNanme, Cont LNanme +
FROM Cont act WHERE Cust 1D = .vCustID

OPEN cl1

-- Get the first row of Custoner data

FETCH c1 INTO vCust | D I NDI CATOR i vl, vConpany |NDI CATOR iv2, +
vAddress | NDI CATOR iv3, vCOty IND CATOR iv4, vState | NDI CATOR iv5, +
vZi pCode | NDI CATCR iv6, vPhone | NDI CATOR iv7

WH LE SQ.CCDE <> 100 THEN

-- Display the Custoner data and open cursor c2 to
-- retrieve the matching contact data
SET VAR vCityStatezZip = (.vGty +',' & .vState & .vZ pCode)
WRI TE . vCust| D, .vConpany
WRI TE . vAddr ess
WRITE .vCityStateZip
OPEN c2
FETCH c2 | NTO vFNare | NDI CATOR i1, vLNane | NDI CATOR i 2
VWH LE SQLCODE <> 100 THEN
SET VAR vFul | Nane = (.vFNane & .vLNane)
VRl TE . vFul | Nane
FETCH c2 I NTO vFNane | NDI CATOR i 1, vLNane | NDI CATOR i 2
ENDWHI LE

-- Cose cursor c2 and get the next row of
-- Customer data
CLCSE c2
FETCH c1 I NTO vCust| D | NDI CATOR i vl, vConpany | ND CATOR iv2, +
vAddress | NDI CATOR iv3, vCOty IND CATOR iv4, vState | NDI CATOR iv5, +
vZi pCode | NDI CATCR iv6, vPhone | NDI CATOR iv7
ENDWHI LE
DROP CURSCR c1
DROP CURSCR c2
CLEAR VAR vCust| D, vConpany, vAddress, vCty, vState, +
vZi pCode, vPhone, vGtyStateZip, vFNane, vLNanme, vFull Nane
RETURN

Another small change also improves performance - instead of using SET VAR commands within
the WHILE loops to concatenate city, state and zipcode together, and first and last nhame
together, the concatenation operation can be done in the DECLARE CURSOR command. The
concatenation in the DECLARE CURSOR reduces the number of commands that are repeated for
each row and moves the work to the DECLARE CURSOR command.

*(Cust Rep4. RVD add the concatenation to the DECLARE CURSOR)
SET VAR vCust| D | NTEGER = NULL
SET VAR vConpany TEXT = NULL

SET VAR vAddress TEXT = NULL

SET VAR vGty TEXT = NULL

SET VAR vState TEXT = NULL

SET VAR vZi pCode TEXT = NULL

SET VAR vPhone TEXT = NULL

SET VAR vG tyStateZip TEXT = NULL
SET VAR vFNanme TEXT = NULL

SET VAR vLNanme TEXT = NULL

Copyright © 1982-2017 R:BASE Technologies, Inc.

20

R:BASE Cursors Explained

SET VAR vFul | Name TEXT = NULL

SET VAR vCheckCursor1l | NTEGER

| F vCheckCursorl = 1 THEN
DROP CURSCR c1

ENDI F

SET VAR vCheckCursor?2 | NTEGER

| F vCheckCursor2 = 1 THEN
DROP CURSCR c2

ENDI F

(CHKCUR(" ¢1'))

(CHKCUR(' ¢2'))

-- Repl ace SET VAR comands with expressions in

-- the DECLARE CURSCOR

DECLARE c1 CURSOR FOR SELECT Custl|D, Company, +
Cust Address, (CQustCty + ',' & CustState & CQustZip), +
Cust Phone FROM Cust omer ORDER BY Cust|D

DECLARE c2 CURSOR FOR SELECT (Cont FNarme & Cont LNane) +
FROM Cont act WHERE CustID = .vCust|D

OPEN c1

-- Retrieve and display the Custoner data
FETCH c1 | NTO vCust | D I NDI CATOR iv1, vConpany |NDI CATOR iv2, +

vAddress | NDI CATOR iv3, vCOtyStateZip | NDI CATOR i v4, vPhone | NDI CATCR i v5
WH LE SQLCODE <> 100 THEN

WRI TE .vCust| D, .vConpany

WRI TE . vAddr ess

WRITE .vCGtyStateZ p

-- Retrieve and display the contact data
CPEN c2
FETCH c2 I NTO vFul | Name | NDI CATOR i 1
WH LE SQLCODE <> 100 THEN

WRI TE . vFul | Narre

FETCH c2 I NTO vFul | Name | NDI CATOR i 1
ENDVH LE

-- Cose cursor c2 and get the next row of

-- Custoner data

CLCSE c2

FETCH c1 I NTO vCust| D | NDI CATOR ivl, vConpany | ND CATOR iv2, +

vAddress | NDI CATOR iv3, vCtyStateZip | NDI CATOR i v4, vPhone | ND CATCR iv5

ENDWHI LE
DROP CURSCR c1
DROP CURSCR c2
CLEAR VAR vCust | D, vConpany, vAddress, vCGty, vState, +

vZi pCode, vPhone, vGtyStateZi p, vFName, vLNane, vFul | Narme
RETURN

The final change to improve performance is to use the RESET option on the OPEN c2 command
instead of CLOSE c2. Overall, we have improved performance on this small set of rows by a full
second. On a larger data set you can expect to see a greater performance improvement.

*(CUSTREPS. RVD)

--reset cursor 2 instead of close and open
SET VAR vCust| D | NTEGER = NULL

SET VAR vConpany TEXT = NULL

SET VAR vAddress TEXT = NULL

Copyright © 1982-2017 R:BASE Technologies, Inc.

Optimizing Cursors 21

SET VAR vOty TEXT = NULL

SET VAR vState TEXT = NULL

SET VAR vZi pCode TEXT = NULL

SET VAR vPhone TEXT = NULL

SET VAR vGityStateZip TEXT = NULL
SET VAR vFNane TEXT = NULL

SET VAR vLNane TEXT = NULL

SET VAR vFul | Name TEXT = NULL

SET VAR vCheckCursorl I NTEGER = (CHKCUR('cl'))

| F vCheckCursorl = 1 THEN
DROP CURSCR c1

ENDI F

SET VAR vCheckCursor?2 | NTEGER

| F vCheckCursor2 = 1 THEN
DROP CURSCR c2

ENDI F

(CHKCUR(' ¢2'))

SET VAR vCust | D | NTEGER
DECLARE c1 CURSOR FOR SELECT Custl D, Conpany, +
Cust Address, (CQustCity + ',' & CustState & CustZip), +
Cust Phone FROM Cust omer ORDER BY Cust| D
DECLARE c2 CURSCOR FOR SELECT (Cont FNane & Cont LNane) +
FROM Cont act WHERE CustID = .vCustID
COPEN c1
FETCH c1 I NTO vCust| D | NDI CATCR ivl, vConpany | ND CATOR iv2, +
vAddress | NDI CATOR iv3, vGtyStateZip | ND CATOR iv4, vPhone | NDI CATOR iv5
VWH LE SQLCODE <> 100 THEN
VWRI TE .vCustI D, .vConpany
WRI TE . vAddr ess
WRITE .vO tyStateZp

-- Open cursor c2 with the RESET option,
-- no CLCSE command is needed
OPEN c2 RESET
FETCH c2 | NTO vFul | Name | NDI CATOR i 1
VWH LE SQLCODE <> 100 THEN
WRI TE . vFul | Nane
FETCH c2 | NTO vFul | Name | NDI CATOR i 1
ENDVH LE
FETCH c1 I NTO vCust| D | NDI CATCR ivl, vConpany | NDI CATOR iv2, +
vAddress | NDI CATOR iv3, vGtyStateZip | ND CATOR iv4, vPhone | NDI CATOR iv5
ENDWHI LE
DROP CURSCR c1
DROP CURSCR c2
CLEAR VAR vCust | D, vConpany, vAddress, vCGty, vState, +
vZi pCode, vPhone, vGtyStateZi p, vFNane, vLName, vFull Nane
RETURN

As you can see from the above examples, maximizing the work of the DECLARE CURSOR
command provides significant performance improvements. The changes were small and they
didn't involve a lot of time or programming effort, but these changes did result in definite
performance benefits.

Customize the environment
In addition to optimizing your programming code, you can improve cursor performance by
optimizing the environment. Obviously, code runs faster on a newer computer. Outside of

Copyright © 1982-2017 R:BASE Technologies, Inc.

22

R:BASE Cursors Explained

upgrading your hardware, however, certain R:BASE environment settings can be used to
improve performance. These settings generally improve overall performance as well as cursor
performance.

Look at the EXPLAIN.DAT output file generated by the MICRORIM_EXPLAIN variable to see the
cursor query optimization. The OPEN command actually executes the query. Each query
executed in your program puts an entry in EXPLAIN.DAT; for example, SELECT or UPDATE
commands in the WHILE loop are reflected. You might also see a query reference to the
SYS_RULES table, which is used for multi-user locking control.

By using EXPLAIN.DAT, you can easily see why using the RESET option on OPEN is faster.
Normally, each OPEN redoes the query. When RESET is used, the query is only optimized once.

The EXPLAIN.DAT entries for the last two command files (CUSTREP4.RMD and CUSTREP5.RMD)
from Example 2 are shown here. The first entry shows nested cursors using the OPEN and
CLOSE commands. The second entry shows using the RESET option on OPEN.

Cursor cl on the Customer table is accessed sequentially, all rows in the table are retrieved,
and no WHERE clause is used. If an indexed WHERE clause was used, EXPLAIN.DAT would
show the index used. The second cursor on the Contact table does use an indexed WHERE
clause to define the query. This query is redone each time the cursoris opened with a different
vCustID value.

SortStrategy = DB_TAG (internal =1)
Sel ect Cost=1. (Opti m zati onTi me=0ns)

Cust oner Sequenti al
Sel ect Cost =2. 904827e-002 (Opti m zati onTi ne=0ns)

Cont act (Col umNanme=Cust | D, Type=F) Random Dup=1. 296296 Adj =0. 9714286
Sel ect Cost =2. 904827e- 002 (Opti mi zati onTi ne=0rs)

Cont act (Col umName=Cust | D, Type=F) Random Dup=1. 296296 Adj =0. 9714286
Sel ect Cost =2. 904827e- 002 (Opti m zati onTi me=0ns)

Cont act (Col umName=Cust | D, Type=F) Random Dup=1. 296296 Adj =0. 9714286

Sel ect Cost =2. 904827e- 002 (Opti m zati onTi ne=0ns)

Cont act (Col umName=Cust | D, Type=F) Random Dup=1. 296296 Adj =0. 9714286
Sel ect Cost =2. 904827e- 002 (Opti ni zati onTi ne=0rs)

Cont act (Col umName=Cust | D, Type=F) Random Dup=1. 296296 Adj =0. 9714286
Sel ect Cost =2. 904827e- 002 (Opti m zati onTi me=0ns)

Cont act (Col unmmName=Cust | D, Type=F) Random Dup=1. 296296 Adj =0. 9714286
Sel ect Cost=1. (Opti m zati onTi me=0ns)

SYS_RULES Sequenti al

The following EXPLAIN.DAT entry uses OPEN c2 RESET. The same query is used each time cursor
c2 is accessed. The query does not need to be reoptimized each time the cursor is opened.

SortStrategy = DB_TAG (internal =1)
Sel ect Cost=1. (Optim zationTi me=0ns)
Cust oner Sequenti al
Sel ect Cost =2. 904827e- 002 (Opti m zationTi me=0ns)
Cont act (Col uimmName=Cust | D, Type=F) Random Dup=1. 296296 Adj =0. 9714286
Sel ect Cost=1. (Opti m zati onTi me=0ns)
SYS _RULES Sequenti al

For additional information on using the MICRORIM_EXPLAIN variable to see the cursor query
optimization, refer to the "Environment Optimization" chapter within the Reference Index of the
R:BASE Help.

Copyright © 1982-2017 R:BASE Technologies, Inc.

Optimizing Cursors 23

8 Questions & Answers

Q. When should I use a cursor?

A. Use a cursor when it seems like the best way to get a task done. There are no rules or
standards to say when you should use a cursor and when you shouldn't. Often the logic behind
a cursor is easier to understand than the logic behind a complex SELECT or UPDATE command
that works across a group of rows. Many programmers have replaced DECLARE CURSOR
routines with a single INSERT, UPDATE or DELETE command, most often for performance
reasons, but not all cursors can be replaced with a single SQL command.

Deciding to use a cursor will depend on your level of programming expertise and understanding
of the task to be accomplished. First get the program to work; once it works, look at ways to
make the program run more efficiently and faster.

Q. How do I make a cursor faster?

A. Using a DECLARE CURSOR is slower than using just a single SQL command working across a
group of rows, but some tasks just can't be done without using a cursor. You can use certain
techniques to maximize the performance of DECLARE CURSOR routines. However, just like
deciding when to use a cursor, there are no rules or standards about improving the
performance of a cursor.

One of the best ways to make a cursor faster is to move as much of the work as possible into
the DECLARE CURSOR command itself. Let the cursor select as many columns as possible. If you
are doing calculations for each row, see if you can use one of the SELECT functions with the
GROUP BY option.

For additional suggestions to improve cursor performance, see the Optimizing Cursors chapter
in this document.

Q. Should I use WHERE CURRENT OF or an explicit WHERE clause?

A. In terms of performance, there is very little difference between the two options. Not all
cursors can be used with the WHERE CURRENT OF syntax. Getting the most out of your
DECLARE CURSOR statement is more important in terms of performance than making your
cursor an updateable cursor.

Q. I'm trying to UPDATE data using WHERE CURRENT OF and I get a syntax error. I have
checked and double checked the syntax, and it is fine.

A. You get this error when you have a non-updateable cursor. A non-updateable cursor does
not support use of WHERE CURRENT OF. Use an explicit WHERE clause to update the table
instead of WHERE CURRENT OF.

Q. What is a non-updateable cursor?

A. A cursor knows what data to retrieve based on the SELECT statement that is part of the
DECLARE CURSOR command. Like a regular SELECT command, the SELECT that is part of the
DECLARE CURSOR can retrieve data from multiple tables or use a GROUP BY. It has all the
features of the regular SELECT. However, only a single table SELECT with no GROUP BY is
updateable; this option is the only one that guarantees the cursor is pointing to a single row in
a table. If the cursor can't point back to and identify a single row, it doesn't know what to
update.

Q. Is it faster to retrieve data inside my WHILE loop using the SET VAR command or the
SELECT...INTO command?

A. It's just a little bit faster to retrieve additional data using a SET VAR command instead of the
SELECT...INTO command. The SELECT has more overhead. The fastest way to retrieve column
data into variables, however, is to retrieve whatever columns possible through the DECLARE
CURSOR command. That method can be almost twice as fast as using either SET VAR or
SELECT...INTO.

Q. My WHILE loop never ends. It just keeps repeating the last row.

Copyright © 1982-2017 R:BASE Technologies, Inc.

24

R:BASE Cursors Explained

A. FETCH, which sets SQLCODE, should be the last command in the WHILE loop. When no more
data is available, SQLCODE is set to 100. If FETCH is the last command in the WHILE loop, the
next command executed is the WHILE statement, which tests the current value of SQLCODE.
Other SQL commands placed after the FETCH and before the ENDWHILE might reset SQLCODE
to a value other than 100.

Also, if your WHILE condition is not SQLCODE <> 100, make sure you are checking the condition
correctly. If the WHILE loop doesn't exit, the WHILE condition is never false. Use TRACE and set
up watch variables to see what is happening with your variable values.

Q. Why won't WHENEVER work with DECLARE CURSOR?

A. WHENEVER is an SQL error trap command that executes a GOTO whenever the data not
found situation (SQLCODE = 100) occurs. At first glance, WHENEVER seems ideal for use with a
DECLARE CURSOR. However, if your DECLARE CURSOR routine uses any other SQL commands
that can return a "data not found" error, such as SELECT, INSERT or UPDATE, the WHENEVER
immediately exits the DECLARE CURSOR WHILE loop even though all the data has not been
processed. The R:BASE error "No rows exist or satisfy the WHERE clause" is a "data not found"
error and sets SQLCODE to 100.

Q. I use DECLARE CURSOR to find out if a row exists in a table. Is there a way to do this
check faster?

A. If you only want to see if a row exists in a table, don't use DECLARE CURSOR. The DECLARE
CURSOR command by itself doesn't check this. You need to OPEN the cursor and FETCH before
you know if a row has been found. Instead use the SELECT command; SELECT INTO a variable
and test the variable value, or test SQLCODE immediately after the SELECT command. If no row
is found, SQLCODE is set to 100. Using just the SELECT command is much faster than using the
DECLARE CURSOR.

Q. My DECLARE CURSOR command is giving me a syntax error. Is there an easy way to
check the syntax?

A. First make sure the cursor name is in the correct place in the command. A common error is to
use DECLARE CURSOR c1 instead of DECLARE c1 CURSOR. The SELECT part of the DECLARE
CURSOR command can get quite complex, particularly when more than one table is involved.
Test the SELECT part of the DECLARE CURSOR command at the R> Prompt, which executes just
like a regular SELECT command. You can test and debug the SELECT part of your DECLARE
CURSOR before putting it into the DECLARE CURSOR structure.

Copyright © 1982-2017 R:BASE Technologies, Inc.

Questions & Answers

9 Useful Resources

. R:BASE Home Page:

. R:BASE X Home Page:

. Up-to-Date R:BASE Updates:
. Sample Applications:

. General R:BASE Syntax:

. Technical Documents - From The Edge:

. More Sample Applications:
. Education and Training:
. Upcoming Events:

. RiBASE Beginners Tutorial:

25

http://www.rbase.com

http://www.rbasex.com

http://www.rupdates.com

http://www.rbasecommunity.com

http://www.rsyntax.com

http://www.razzak.com/fte

http://www.razzak.com/sampleapplications

http://www.rbaseuniversity.com

http://www.rbase.com/events

http://www.rtutorial.com

Copyright © 1982-2017 R:BASE Technologies, Inc.

http://www.rbase.com
http://www.rbasex.com
http://www.rupdates.com
http://www.rbasecommunity.com
http://www.rsyntax.com
http://www.razzak.com/fte
http://www.razzak.com/sampleapplications
http://www.rbaseuniversity.com
http://www.rbase.com/events
http://www.rtutorial.com

26 R:BASE Cursors Explained

multi-table cursor 3

- N -
= A = nested cursor 5

ABSOLUTE 8 NEXT 8I
awerage 13 non-updatable cursor 4

_C - -0 -

CLOSE 1,13 OPEN 1,7,13
count 13' optimizing cursors 13

CURRENT OF cursorname 1 P

= D = PRIOR 8

DECLARE CURSOR 1

DELETE 1 = Q =

DISTINCT 13
Q&A 23

DROP 1 .
questions 23

-E - ‘R -

example 13

Index

EXPLAIN.DAT 13 RELATIVE 8
RESET 7,13
F resettable cursor 7
- B resources 25
FETCH 1
FIRST 8 - S -
functions 13
SCROLL 8
G scrolling cursor 8
B - SELECT 1
GROUP BY 4 SQL 13
SQLCODE 1
I sum 13
INSERT 13 - U -
L UPDATE 1, 13
LAST 8 - W -
linked 3

WHILE loop 1

MICRORIM_EXPLAIN 13

Copyright © 1982-2017 R:BASE Technologies, Inc.

Notes

	R:BASE Cursors
	Multi-Table Cursors
	Non-Updateable Cursors
	Nested Cursors
	Resettable Cursors
	Scrolling Cursors
	Optimizing Cursors
	Example 1
	Example 2

	Questions & Answers
	Useful Resources

